Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Antiviral Res ; 215: 105636, 2023 07.
Article in English | MEDLINE | ID: covidwho-2323688

ABSTRACT

Although the clinical manifestation of COVID-19 is mainly respiratory symptoms, approximately 20% of patients suffer from cardiac complications. COVID-19 patients with cardiovascular disease have higher severity of myocardial injury and poor outcomes. The underlying mechanism of myocardial injury caused by SARS-CoV-2 infection remains unclear. Using a non-transgenic mouse model infected with Beta variant (B.1.351), we found that the viral RNA could be detected in lungs and hearts of infected mice. Pathological analysis showed thinner ventricular wall, disorganized and ruptured myocardial fiber, mild inflammatory infiltration, and mild epicardia or interstitial fibrosis in hearts of infected mice. We also found that SARS-CoV-2 could infect cardiomyocytes and produce infectious progeny viruses in human pluripotent stem cell-derived cardiomyocyte-like cells (hPSC-CMs). SARS-CoV-2 infection caused apoptosis, reduction of mitochondrial integrity and quantity, and cessation of beating in hPSC-CMs. In order to dissect the mechanism of myocardial injury caused by SARS-CoV-2 infection, we employed transcriptome sequencing of hPSC-CMs at different time points after viral infection. Transcriptome analysis showed robust induction of inflammatory cytokines and chemokines, up-regulation of MHC class I molecules, activation of apoptosis signaling and cell cycle arresting. These may cause aggravate inflammation, immune cell infiltration, and cell death. Furthermore, we found that Captopril (hypotensive drugs targeting ACE) treatment could alleviate SARS-CoV-2 induced inflammatory response and apoptosis in cardiomyocytes via inactivating TNF signaling pathways, suggesting Captopril may be beneficial for reducing COVID-19 associated cardiomyopathy. These findings preliminarily explain the molecular mechanism of pathological cardiac injury caused by SARS-CoV-2 infection, providing new perspectives for the discovery of antiviral therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , Captopril/pharmacology , Captopril/metabolism , Myocytes, Cardiac , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Apoptosis
2.
Nat Commun ; 14(1): 2179, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2299017

ABSTRACT

A full understanding of the inactivated COVID-19 vaccine-mediated antibody responses to SARS-CoV-2 circulating variants will inform vaccine effectiveness and vaccination development strategies. Here, we offer insights into the inactivated vaccine-induced antibody responses after prime-boost vaccination at both the polyclonal and monoclonal levels. We characterized the VDJ sequence of 118 monoclonal antibodies (mAbs) and found that 20 neutralizing mAbs showed varied potency and breadth against a range of variants including XBB.1.5, BQ.1.1, and BN.1. Bispecific antibodies (bsAbs) based on nonoverlapping mAbs exhibited enhanced neutralizing potency and breadth against the most antibody-evasive strains, such as XBB.1.5, BQ.1.1, and BN.1. The passive transfer of mAbs or their bsAb effectively protected female hACE2 transgenic mice from challenge with an infectious Delta or Omicron BA.2 variant. The neutralization mechanisms of these antibodies were determined by structural characterization. Overall, a broad spectrum of potent and distinct neutralizing antibodies can be induced in individuals immunized with the SARS-CoV-2 inactivated vaccine BBIBP-CorV, suggesting the application potential of inactivated vaccines and these antibodies for preventing infection by SARS-CoV-2 circulating variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Female , Animals , Mice , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Monoclonal , Antibodies, Neutralizing , Mice, Transgenic , Vaccines, Inactivated , Antibodies, Viral
3.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2297231

ABSTRACT

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , COVID-19/diagnosis , Cell-Free Nucleic Acids/genetics
4.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2292813

ABSTRACT

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Subject(s)
COVID-19 , Interferon Type I , Humans , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , DNA Helicases/genetics , COVID-19/genetics , RNA Helicases/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/genetics , DNA , Interferon Type I/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
5.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2232600

ABSTRACT

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Subject(s)
COVID-19 , Common Cold , Coronavirus 229E, Human , Coronavirus NL63, Human , Humans , Animals , Mice , Aged , SARS-CoV-2 , Cross Protection
6.
Small ; 19(16): e2207066, 2023 04.
Article in English | MEDLINE | ID: covidwho-2209230

ABSTRACT

Inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and excessive inflammation is the current task in the prevention and treatment of corona vireus disease 2019 (COVID-19). Here, a dual-function circular aptamer-ASO chimera (circSApt-NASO) is designed to suppress SARS-CoV-2 replication and inflammation. The chemically unmodified circSApt-NASO exhibits high serum stability by artificial cyclization. It is also demonstrated that the SApt binding to spike protein enables the chimera to be efficiently delivered into the host cells expressing ACE2 along with the infection of SARS-CoV-2. Among them, the SApt potently inhibits spike-induced inflammation. The NASO targeting to silence N genes not only display robust anti-N-induced inflammatory activity, but also achieve efficient inhibition of SARS-CoV-2 replication. Overall, benefiting from the high stability of the cyclization, antispike aptamer-dependent, and viral infection-mediate targeted delivery, the circSApt-NASO displays robust potential against authentic SARS-CoV-2 and Omicron, providing a promising specific anti-inflammatory and antiproliferative reagent for therapeutic COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Inflammation , Cell Proliferation
7.
Front Public Health ; 10: 877668, 2022.
Article in English | MEDLINE | ID: covidwho-1952824

ABSTRACT

Background: With promotion of COVID-19 vaccinations, there has been a corresponding vaccine hesitancy, of which older adolescents and young adults represent groups of particular concern. In this report, we investigated the prevalence and reasons for vaccine hesitancy, as well as potential risk factors, within older adolescents and young adults in China. Methods: To assess these issues, an online survey was administered over the period from March 14 to April 15, 2021. Older adolescents (16-17 years old) and young adults (18-21 years old) were recruited nationwide from Wechat groups and results from a total of 2,414 respondents were analyzed. Socio-demographic variables, vaccine hesitancy, psychological distress, abnormal illness behavior, global well-being and social support were analyzed in this report. Results: Compared to young adults (n = 1,405), older adolescents (n = 1,009) showed higher prevalence rates of COVID-19 vaccine hesitancy (16.5 vs. 7.9%, p < 0.001). History of physical diseases (p = 0.007) and abnormal illness behavior (p = 0.001) were risk factors for vaccine hesitancy among older adolescents, while only a good self-reported health status (p = 0.048) was a risk factor for young adults. Concerns over COVID-19 vaccine side effects (67.1%) and beliefs of invulnerability regarding infection risk (41.9%) were the most prevalent reasons for vaccine hesitancy. Providing evidence on the vaccine reduction of COVID-19 infection risk (67.5%), ensuring vaccine safety (56.7%) and the low risk of side effects (52.7%) were the most effective persuasions for promoting vaccinations. Conclusion: In China, older adolescents showed a higher prevalence for vaccine hesitancy than that of young adults. Abnormal illness behavior and history of physical diseases were risk factors for vaccine hesitancy among these older adolescents, while social support represents an important factor which could help to alleviate this hesitancy.


Subject(s)
COVID-19 , Vaccines , Adolescent , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , China/epidemiology , Cross-Sectional Studies , Health Knowledge, Attitudes, Practice , Humans , Parents/psychology , Patient Acceptance of Health Care , Vaccination Hesitancy , Young Adult
8.
Front Immunol ; 13: 819058, 2022.
Article in English | MEDLINE | ID: covidwho-1834399

ABSTRACT

Vaccines for COVID-19 are now a crucial public health need, but the degree of protection provided by conventional vaccinations for individuals with compromised immune systems is unclear. The use of viral vectors to express neutralizing monoclonal antibodies (mAbs) in the lung is an alternative approach that does not wholly depend on individuals having intact immune systems and responses. Here, we identified an anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibody, NC0321, which can efficiently neutralize a range of SARS-CoV-2 variants, including alpha, beta, delta, and eta. Both prophylactic and therapeutic NC0321 treatments effectively protected mice from SARS-CoV-2 infection. Notably, we adopted viral vector-mediated delivery of NC0321 IgG1 as an attractive approach to prevent SARS-CoV-2 infection. The NC0321 IgG1 expression in the proximal airway, expressed by a single direct in-vivo intranasal (I.N.) administration of a self-inactivating and recombinant lentiviral vector (rSIV.F/HN-NC0321), can protect young, elderly, and immunocompromised mice against mouse-adapted SARS-CoV-2 surrogate challenge. Long-term monitoring indicated that rSIV.F/HN-NC0321 mediated robust IgG expression throughout the airway of young and SCID mice, importantly, no statistical difference in the NC0321 expression between young and SCID mice was observed. A single I.N. dose of rSIV.F/HN-NC0321 30 or 180 days prior to SARS-CoV-2 challenge significantly reduced lung SARS-CoV-2 titers in an Ad5-hACE2-transduced mouse model, reconfirming that this vectored immunoprophylaxis strategy could be useful, especially for those individuals who cannot gain effective immunity from existing vaccines, and could potentially prevent clinical sequelae.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Mice , Mice, SCID , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
10.
Protein Cell ; 13(8): 602-614, 2022 08.
Article in English | MEDLINE | ID: covidwho-1777862

ABSTRACT

The nucleocapsid (N) protein of SARS-CoV-2 has been reported to have a high ability of liquid-liquid phase separation, which enables its incorporation into stress granules (SGs) of host cells. However, whether SG invasion by N protein occurs in the scenario of SARS-CoV-2 infection is unknow, neither do we know its consequence. Here, we used SARS-CoV-2 to infect mammalian cells and observed the incorporation of N protein into SGs, which resulted in markedly impaired self-disassembly but stimulated cell cellular clearance of SGs. NMR experiments further showed that N protein binds to the SG-related amyloid proteins via non-specific transient interactions, which not only expedites the phase transition of these proteins to aberrant amyloid aggregation in vitro, but also promotes the aggregation of FUS with ALS-associated P525L mutation in cells. In addition, we found that ACE2 is not necessary for the infection of SARS-CoV-2 to mammalian cells. Our work indicates that SARS-CoV-2 infection can impair the disassembly of host SGs and promote the aggregation of SG-related amyloid proteins, which may lead to an increased risk of neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis , COVID-19 , Amyloidogenic Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Cytoplasmic Granules/metabolism , Mammals , SARS-CoV-2 , Stress Granules
11.
Emerg Microbes Infect ; 11(1): 168-171, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1623181

ABSTRACT

HCoV-OC43 is one of the mildly pathogenic coronaviruses with high infection rates in common population. Here, 43 HCoV-OC43 related cases with pneumonia were reported, corresponding genomes of HCoV-OC43 were obtained. Phylogenetic analyses based on complete genome, orf1ab and spike genes revealed that two novel genotypes of HCoV-OC43 have emerged in China. Obvious recombinant events also can be detected in the analysis of the evolutionary dynamics of novel HCoV-OC43 genotypes. Estimated divergence time analysis indicated that the two novel genotypes had apparently independent evolutionary routes. Efforts should be conducted for further investigation of genomic diversity and evolution analysis of mildly pathogenic coronaviruses.


Subject(s)
Common Cold/epidemiology , Coronavirus Infections/epidemiology , Coronavirus OC43, Human/genetics , Genome, Viral , Genotype , Pneumonia, Viral/epidemiology , Base Sequence , Bayes Theorem , Child , Child, Hospitalized , Child, Preschool , China/epidemiology , Common Cold/pathology , Common Cold/transmission , Common Cold/virology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus OC43, Human/classification , Coronavirus OC43, Human/pathogenicity , Epidemiological Monitoring , Female , Humans , Infant , Male , Monte Carlo Method , Mutation , Phylogeny , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Recombination, Genetic
12.
Cell Discov ; 7(1): 65, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1569241

ABSTRACT

The current COVID-19 pandemic, caused by SARS-CoV-2, poses a serious public health threat. Effective therapeutic and prophylactic treatments are urgently needed. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, which binds to the receptor binding domain (RBD) of SARS-CoV-2 spike protein. Here, we developed recombinant human ACE2-Fc fusion protein (hACE2-Fc) and a hACE2-Fc mutant with reduced catalytic activity. hACE2-Fc and the hACE2-Fc mutant both efficiently blocked entry of SARS-CoV-2, SARS-CoV, and HCoV-NL63 into hACE2-expressing cells and inhibited SARS-CoV-2 S protein-mediated cell-cell fusion. hACE2-Fc also neutralized various SARS-CoV-2 strains with enhanced infectivity including D614G and V367F mutations, as well as the emerging SARS-CoV-2 variants, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.1 (Kappa), and B.1.617.2 (Delta), demonstrating its potent and broad-spectrum antiviral effects. In addition, hACE2-Fc proteins protected HBE from SARS-CoV-2 infection. Unlike RBD-targeting neutralizing antibodies, hACE2-Fc treatment did not induce the development of escape mutants. Furthermore, both prophylactic and therapeutic hACE2-Fc treatments effectively protected mice from SARS-CoV-2 infection, as determined by reduced viral replication, weight loss, histological changes, and inflammation in the lungs. The protection provided by hACE2 showed obvious dose-dependent efficacy in vivo. Pharmacokinetic data indicated that hACE2-Fc has a relative long half-life in vivo compared to soluble ACE2, which makes it an excellent candidate for prophylaxis and therapy for COVID-19 as well as for SARS-CoV and HCoV-NL63 infections.

13.
J Biol Chem ; 295(36): 12686-12696, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-1387615

ABSTRACT

Type II transmembrane serine proteases (TTSPs) are a group of enzymes participating in diverse biological processes. Some members of the TTSP family are implicated in viral infection. TMPRSS11A is a TTSP expressed on the surface of airway epithelial cells, which has been shown to cleave and activate spike proteins of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronaviruses (CoVs). In this study, we examined the mechanism underlying the activation cleavage of TMPRSS11A that converts the one-chain zymogen to a two-chain enzyme. By expression in human embryonic kidney 293, esophageal EC9706, and lung epithelial A549 and 16HBE cells, Western blotting, and site-directed mutagenesis, we found that the activation cleavage of human TMPRSS11A was mediated by autocatalysis. Moreover, we found that TMPRSS11A activation cleavage occurred before the protein reached the cell surface, as indicated by studies with trypsin digestion to remove cell surface proteins, treatment with cell organelle-disturbing agents to block intracellular protein trafficking, and analysis of a soluble form of TMPRSS11A without the transmembrane domain. We also showed that TMPRSS11A was able to cleave the SARS-CoV-2 spike protein. These results reveal an intracellular autocleavage mechanism in TMPRSS11A zymogen activation, which differs from the extracellular zymogen activation reported in other TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation.


Subject(s)
Epithelial Cells/metabolism , Membrane Proteins/metabolism , Proteolysis , Serine Proteases/metabolism , A549 Cells , Cells, Cultured , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Protein Domains , Protein Transport , Respiratory Mucosa/cytology , Serine Proteases/chemistry , Serine Proteases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Trypsin/metabolism
14.
J. Jilin Univ. Med. Ed. ; 3(46):625-629, 2020.
Article in Chinese | ELSEVIER | ID: covidwho-727532

ABSTRACT

Objective: To investigate the effect of modified fecal drainage device on avoiding the occupational exposure infection of the medical staffs in the treatment of corona virus disease 2019 (COVID-19), and to provide the reference for the clinical treatment of COVID-19 and avoiding the occupational exposure infection of the medical staffs. Methods: The clinical data of a critical COVID-19 patient with diarrhea as the main symptom were collected. The modified fecal drainage device of F18 silicone gastric tube connected with disposable negative pressure drainage device was uesd to treat the fecal excrement of the patient. The general data of the medical staffs, containing 16 doctors and 48 nurses∗ were collected. The COVID-19 serological antibodies and pharyngeal swabs of the medical staffs were tested every 2 weeks. Results: The 78-year-old woman patient was admitted to hospital due to diarrhea∗ cough and expectoration for 15 d, chest distress and shortness of breath for 10 d» and fever for 1 d. The test result of COVID-19 pharyngeal swabs of the patient was positive. After the feces were collected with the modified fecal drainage device, the average operation time of medical staffs was reduced from 20 min to 10 min, the patient's perianal skin flushing subsided, and no incontinence-associated dermatitis ( IAD ) occurred. The patient was cured but remained in hospital for the other underlying diseases. The test results of COVID-19 serological antibodies and pharyngeal swabs of 64 medical staffs were all negative, all the medical staffs had no infection. Conclusion: The modified fecal drainage device has better stability, which can effectively prevent IAD and the spread of COVID-19 and reduce the risk of occupational exposure infection of medical staffs, and it is suitable for clinical promotion application.

SELECTION OF CITATIONS
SEARCH DETAIL